介绍
mysql安装: mysql5.7 安装与配置(centos7)
使用EXPLAIN关键字可以模拟优化器执行SQL语句,分析你的查询语句或是结构的性能瓶颈。在 select 语句之前增加 explain 关键字,MySQL 会在查询上设置一个标记,执行查询会返回执行计划的信息,而不是 执行这条SQL。
⚠️ 如果 from 中包含子查询,仍会执行该子查询,将结果放入临时表中。
示例分析
表准备
DROP TABLE IF EXISTS `actor`; |
示例
在查询中的每个表会输出一行,如果有两个表通过 join 连接查询,那么会输出两行如下图:
explain两个变种(5.7以后不加也能实现效果)
explain 有两个变种 explain extended 和 explain partitions,可以在其基础上看更多的信息。
explain extended
会在 explain 的基础上额外提供一些查询优化的信息。紧随其后通过 show warnings 命令可以得到优化后的查询语句,从而看出优化器优化了什么。额外还有 filtered 列,是一个半分比的值,rows * filtered/100 可以估算出将要和 explain 中前一个表进行连接的行数(前一个表指 explain 中的id值比当前表id值小的 表)。
explain partitions
相比 explain 多了个 partitions 字段,如果查询是基于分区表的话,会显示查询将访问的分 区。
explain中的列
接下来我们将展示 explain 中每个列的作用。
id
id列的编号是 select 的序列号,有几个 select 就有几个id,并且id的顺序是按 select 出现的顺序增长的。id列越大执行优先级越高,id相同则从上往下执行,id为NULL最后执行。
select_type
select_type 表示对应行的查询类型是简单查询还是复杂查询。
simple:简单查询。查询不包含子查询和union
primary:复杂查询中最外层的 select
subquery:包含在 select 中的子查询(不在 from 子句中)
derived:包含在 from 子句中的子查询。MySQL会将结果存放在一个临时表中,也称为派生表(derived的英文含 义)
primary,subquery,derived 三种情况如下图
union:在 union 中的第二个和随后的 select
table
这一列表示 explain 的一行正在访问哪个表。当 from 子句中有子查询时,table列是
type
这一列表示关联类型或访问类型,即MySQL决定如何查找表中的行,查找数据行记录的大概范围。 依次从最优到最差分别为:
system > const > eq_ref > ref > range > index > ALL
一般来说,得保证查询达到range级别,最好达到ref。
null
mysql能够在优化阶段分解查询语句,在执行阶段用不着再访问表或索引。例如:在索引列中选取最小值,可 以单独查找索引来完成,不需要在执行时访问表
system
表中只有一行数据或者是空表,且只能用于myisam和memory表。如果是Innodb引擎表,type列在这个情况通常都是all或者index。
const
mysql能对查询的某部分进行优化并将其转化成一个常量(可以看show warnings 的结果)。用于 primary key 或 unique key 的所有列与常数比较时,所以表最多有一个匹配行,读取1次,速度比较快。
eq_ref
primary key 或 unique key 索引的所有部分被连接使用 ,最多只会返回一条符合条件的记录。这可能是在 const 之外最好的联接类型了,简单的 select 查询不会出现这种 type。
ref
相比 eq_ref,不使用唯一索引,而是使用普通索引或者唯一性索引的部分前缀,索引要和某个值相比较,可能会 找到多个符合条件的行。
简单 select 查询,name是普通索引(非唯一索引)
关联表查询,idx_film_actor_id是film_id和actor_id的联合索引,这里使用到了film_actor的左边前缀film_id部分。
range
范围扫描通常出现在 in(), between ,> ,<, >= 等操作中。使用一个索引来检索给定范围的行。
index
扫描全索引就能拿到结果,一般是扫描某个二级索引,这种扫描不会从索引树根节点开始快速查找,而是直接 对二级索引的叶子节点遍历和扫描,速度还是比较慢的,这种查询一般为使用覆盖索引,二级索引一般比较小,所以这 种通常比ALL快一些。
all
即全表扫描,扫描你的聚簇索引的所有叶子节点。通常情况下这需要增加索引来进行优化了。
possible_keys
这一列显示查询可能使用哪些索引来查找。
explain 时可能出现 possible_keys 有列,而 key 显示 NULL 的情况,这种情况是因为表中数据不多,mysql认为索引 对此查询帮助不大,选择了全表查询。
如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查 where 子句看是否可以创造一个适当的索引来提 高查询性能,然后用 explain 查看效果。
key
这一列显示mysql实际采用哪个索引来优化对该表的访问。
如果没有使用索引,则该列是 NULL。如果想强制mysql使用或忽视possible_keys列中的索引,在查询中使用 force index、ignore index。
key_len
这一列显示了mysql在索引里使用的字节数,通过这个值可以算出具体使用了索引中的哪些列。 举例来说,film_actor的联合索引 idx_film_actor_id 由 film_id 和 actor_id 两个int列组成,并且每个int是4字节。通 过结果中的key_len=4可推断出查询使用了第一个列:film_id列来执行索引查找。
key_len计算规则如下:
字符串,char(n)和varchar(n),5.0.3以后版本中,n均代表字符数,而不是字节数,如果是utf-8,一个数字或字母占1个字节,一个汉字占3个字节
- char(n)如果存汉字长度就是 3n 字节
- varchar(n):如果存汉字则长度是 3n + 2 字节,加的2字节用来存储字符串长度,因为 varchar是变长字符串
数值类型
- tinyint:1字节
- smallint:2字节
- int:4字节
- bigint:8字节
时间类型
- date:3字节
- timestamp:4字节
- datetime:8字节
如果字段允许为 NULL,需要1字节记录是否为 NULL索引最大长度是768字节,当字符串过长时,mysql会做一个类似左前缀索引的处理,将前半部分的字符提取出来做索引。
ref
这一列显示了在key列记录的索引中,表查找值所用到的列或常量,常见的有:const(常量),字段名(例:film.id)
rows
这一列是mysql估计要读取并检测的行数,⚠️注意这个不是结果集里的行数。
Extra
这一列展示的是额外信息。常见的重要值如下
Using index:使用覆盖索引
覆盖索引定义: mysql执行计划explain结果里的key有使用索引,如果select后面查询的字段都可以从这个索引的树中 获取,这种情况一般可以说是用到了覆盖索引,extra里一般都有using index;覆盖索引一般针对的是辅助索引,整个 查询结果只通过辅助索引就能拿到结果,不需要通过辅助索引树找到主键,再通过主键去主键索引树里获取其它字段值。
Using where:使用 where 语句来处理结果,并且查询的列未被索引覆盖
Using index condition:查询的列不完全被索引覆盖,where条件中是用索引进行范围搜索;
Using temporary:mysql需要创建一张临时表来处理查询。出现这种情况一般是要进行优化的,首先是想到用索引来优化。
actor.name没有索引,此时创建了张临时表来distinct
film.name建立了idx_name索引,此时查询时extra是using index,没有用临时表
Using filesort: 将用外部排序而不是索引排序,数据较小时从内存排序,否则需要在磁盘完成排序。这种情况下一 般也是要考虑使用索引来优化的。
actor.name未创建索引,会浏览actor整个表,保存排序关键字name和对应的id,然后排序name并检索行记录
film.name建立了idx_name索引,此时查询时extra是using index
Select tables optimized away : 使用某些聚合函数(比如 max、min)来访问存在索引的某个字段时出现
若你觉得我的文章对你有帮助,欢迎点击上方按钮对我打赏
扫描二维码,分享此文章